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We report the results of a search for pair production of scalar bottom quarks (b̃1) and scalar
third-generation leptoquarks (LQ3) in 5.2 fb−1 of pp̄ collisions at the D0 experiment of the Fermilab
Tevatron Collider. Scalar bottom quarks are assumed to decay to a neutralino (χ̃0

1) and a b quark,
and we set 95% C.L. lower limits on their production in the (mb̃1

, mχ̃0

1

) mass plane such as mb̃1
>

247 GeV for mχ̃0

1

= 0 and mχ̃0

1

> 110 GeV for 160 < mb̃1
< 200 GeV. The leptoquarks are assumed

to decay to a tau neutrino and a b quark, and we set a 95% C.L. lower limit of 247 GeV on the mass
of a charge-1/3 third-generation scalar leptoquark.

PACS numbers: 14.80.-j, 13.85.Rm

The standard model (SM) offers an accurate descrip-
tion of current experimental data in high energy physics
but it is believed to be embedded in a more general the-
ory. In particular, extensions of the SM to higher mass
scales have been proposed that predict the existence of
new particles and phenomena which can be searched for
at the Tevatron.

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cSLAC, Menlo Park,
CA, USA, dICREA/IFAE, Barcelona, Spain, eCentro de Investiga-
cion en Computacion - IPN, Mexico City, Mexico, f ECFM, Uni-
versidad Autonoma de Sinaloa, Culiacán, Mexico, and gUniversität
Bern, Bern, Switzerland.

Supersymmetric (SUSY) models provide an extension
of the SM that resolves the “hierarchy problem” by intro-
ducing supersymmetric partners to the known fermions
and bosons [1]. The supersymmetric quarks (squarks)
are mixtures of the states q̃L and q̃R, the superpartners
of the SM quark helicity states. The theory permits a
mass difference between the squark mass eigenstates, q̃1

and q̃2, and allows the possibility that the lighter states
of top and bottom squarks have masses smaller than the
squarks of the first two generations. In this analysis we
consider the region of SUSY parameter space where the
only decay of the lighter bottom squark is b̃1 → bχ̃0

1,
with mb + mχ̃0

1

< mb̃1
< mt + mχ̃

−

1

, and the neutralino

χ̃0
1 and chargino χ̃±

1 are the lightest SUSY partners of
the electroweak and Higgs bosons. This analysis is inter-
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preted within the framework of the minimal supersym-
metric standard model (MSSM) with R-parity [2] conser-
vation, and under the hypothesis that the lightest, and
consequently stable, SUSY particle is the χ̃0

1. We there-

fore search for pp̄ → b̃1
¯̃
b1 → bχ̃0

1b̄χ̃
0
1.

Leptoquarks are hypothesized fundamental particles
that have color, electric charge, and both lepton and
baryon quantum numbers. They appear in many ex-
tensions of the SM including extended gauge theories,
composite models, and SUSY with R-parity violation [3].
Current models suggest that leptoquarks of each of the
three generations should decay to the corresponding gen-
eration of SM leptons and quarks to avoid introduc-
ing unwanted flavor changing neutral currents. Charge-
1/3 third-generation leptoquarks would decay to bν with
branching fraction B or to tτ with branching fraction
1−B. We report on a search for the production of pairs of
bottom squarks and third-generation scalar leptoquarks
in data collected by the D0 Collaboration at the Fermi-
lab Tevatron Collider. For both searches, the signature
is defined to be two b-jets and missing transverse energy
(/ET ) from the escaping neutrinos or neutralinos. This
topology is identical to that for pp̄ → ZH → νν̄ +bb̄ pro-
duction, and the two analyses are based on the same data
and selection criteria [4]. Bottom squark or leptoquark
pairs are expected to be produced mainly through qq̄ an-
nihilation or gg fusion, with identical leading order QCD
production cross sections. We use the next-to-leading
order (NLO) cross sections calculated by prospino 2.1
for both bottom squark [5] and leptoquark [6] pair pro-
duction, and found them to agree to better than 3%.
Previous measurements excluded bottom squark masses
mb̃1

< 222 GeV for a massless neutralino [7], as well

as charge-1/3 third-generation scalar leptoquark masses
mLQ < 229 GeV for B = 1 [8].

The D0 detector [9] consists of layered systems sur-
rounding the interaction point. The momenta of charged
particles and the location of the interaction vertices are
determined using a silicon microstrip tracker and a cen-
tral fiber tracker immersed in the magnetic field of a
2 T solenoid. Jets, electrons, and tau leptons are re-
constructed using the tracking information and the pat-
tern of energy deposits in three uranium/liquid-argon
calorimeters located outside the tracking system with
a central calorimeter covering pseudorapidity |η| < 1.1,
and two end calorimeters housed in separate cryostats
covering the regions up to |η| ≈ 4.2. Jet recon-
struction uses a cone algorithm [10] with radius R =
√

(∆y)2 + (∆φ)2 = 0.5 in rapidity (y) and azimuth (φ).
Muons are identified through the association of tracks
with hits in the muon system, which is outside of the
calorimeter and consists of drift tubes and scintillation
counters before and after 1.8 T iron toroids. The /ET

is determined from the negative of the vector sum of
the transverse components of the energy deposited in the
calorimeter and the transverse momenta pT of detected
muons. The jet energies are calibrated using transverse
energy balance in events with photons and jets and this

calibration is propagated to the value of /ET .
The data were recorded using triggers based on jets

and the /ET in the event. In addition to requirements
on /ET and jet energy, the vector sum of the transverse
energies of all jets, defined as /HT ≡ |

∑

jets ~pT |, the scalar

sum of the pT of the jets (HT ), and the angle α between
the two leading jets in the transverse plane, are also used
for triggering. Typical requirements are /ET > 25 GeV,
/HT > 25 GeV, HT > 50 GeV, and α < 169◦. After
imposing quality requirements, the data correspond to
an integrated luminosity of 5.2 fb−1. The previous D0
publications [7, 8] used a subset of this data sample, and
are superseded by the results obtained in this Letter.

Monte Carlo (MC) samples for 200 < mLQ < 280 GeV,

and for (b̃1, χ̃
0
1) pairs with 80 < mb̃1

< 260 GeV and

mχ̃0

1

< 120 GeV, are generated with pythia [11]. Back-

grounds from SM processes with significant /ET are esti-
mated using MC. The most important backgrounds are
from leptonic decays of W/Z bosons produced in asso-
ciation with jets such as Z → νν̄ and W → eν, and
processes with tt̄ and single top quark production. The
cross sections used to estimate these contributions to
the background are obtained from [12] and [13]. At
the parton level, vector boson pair production and the
single-top quark events are generated with pythia and
comphep [14], respectively, while alpgen [15] is used
for all other samples. All MC events are then pro-
cessed with pythia, which performs parton showering
and hadronization. The resulting samples are processed
using a geant [16] simulation of the D0 detector. To
model the effects of multiple interactions and detector
noise, data from random pp̄ crossings are overlaid on MC
events. The cteq6l1 parameterization [17] is used for
all parton density functions (PDF). Instrumental back-
ground comes mostly from multijet processes with /ET

arising from energy mismeasurement. This background,
which we label MJ, dominates the low /ET region and is
modeled using data.

A signal sample and a sample used to model the MJ
background are selected. We select events with two or
three jets with |η| < 2.5 and pT > 20 GeV, and require
that the interaction vertex has at least three tracks and
is reconstructed within ±40 cm of the center of the de-
tector along the beam direction. As the leading highest
pT jets in the signal events are assumed to originate from
decays of b quarks, we require that at least two jets, in-
cluding the leading jet, have at least two tracks point-
ing to the primary vertex in order to apply b-tagging
algorithms. We also require the two leading jets satisfy
α < 165◦. To reduce the contribution from W → lν de-
cays, we veto events with isolated electrons or muons with
pT > 15 GeV, as well as tau leptons that decay hadron-
ically to a single charged particle with pT > 12 GeV
when there is no associated electromagnetic cluster or
pT > 10 GeV if there is such a cluster [18]. To suppress
the MJ background, we require /ET > 40 GeV and /ET

significance S > 5 [19]. We also remove events when
the direction of the /ET overlaps with a jet in φ by re-
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quiring /ET /GeV > 80 − 40 × ∆φmin( /ET , jets), where
∆φmin( /ET , jets) denotes the minimum of the angles be-
tween the /ET and any of the selected jets.

The contribution from multijet processes is determined
using the techniques described in [4]. For signal events,
the direction of /ET tends to be aligned with the missing
track transverse momentum, /pT , defined as the negative
of the vectorial sum of the pT of the charged particles. A
strong correlation of this kind is not expected in multi-
jet events, where /ET originates mainly from mismeasure-
ment of jet energies in the calorimeter. We exploit this
difference by requiring D < π/2 for signal, where D is
the azimuthal distance between /ET and /pT , ∆φ( /ET , /pT ),
and use events with D > π/2 to model the kinematic dis-
tributions of the MJ background in the signal sample af-
ter subtracting the contribution from SM processes. The
MJ background is normalized before b-tagging by requir-
ing the number of observed events in data to equal the
sum of SM and MJ contributions in the D < π/2 region.
The signal contribution is assumed to be zero. Figure 1
shows the /ET distribution and the background contri-
butions from SM and MJ sources after these selections.
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FIG. 1: (color online). The /ET distribution before b-tagging.
The points with the error bars represent data while the shaded
histograms show the contributions from background pro-
cesses. Signal distributions with (mb̃1

,mχ̃0

1

)=(130,85) GeV

and mLQ = 240 GeV are shown as solid and dashed lines,
respectively.

A neural network (NN) b-tagging algorithm [20] is used
to identify heavy-flavor jets, and reduce the SM and MJ
backgrounds that are dominated by light flavor jets. We
apply b-tagging and use the requirements on the NN out-
put that give one jet to be tagged with an average effi-
ciency of ≈70% and the other with an average efficiency
of ≈50%, where the corresponding probabilities of a light-
flavored jet to be wrongly identified as a b-jet are ≈6.5%
and ≈0.5%, respectively. These conditions are designed

to optimize the discovery reach for a b̃1 and LQ3.
Additional selections reduce the number of events with

poorly measured /ET . We require ∆φmin( /ET , jets) >
0.6 rad, and define an asymmetry A = (/ET − /HT )/( /ET +
/HT ) and require −0.1 < A < 0.2 [21]. The /ET and HT

distributions after imposing b-tagging and the require-
ments on ∆φmin( /ET , jets) and A are shown in Fig. 2,
along with the expectations for two possible signals which
show the kinematic variation for different masses.
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FIG. 2: (color online). The (a) /ET and (b) HT distributions
after b-tagging and additional selections. The points with the
error bars represent data while the shaded histograms show
the contributions from background processes. Signal distri-
butions with (mb̃1

,mχ̃0

1

)=(130,85) GeV and mLQ = 240 GeV

are shown as solid and dashed lines, respectively

We then apply final selections to improve the sensitiv-
ity. As our signals consist of two high-pT b-jets, we use
Xjj ≡ (pjet1

T + pjet2
T )/HT as a discriminant against top-

quark processes. We optimize selections on pjet1
T , /ET ,

HT , and Xjj for different (mb̃1
, mχ̃0

1

) and mLQ by choos-
ing selections that yield the smallest expected limit on
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TABLE I: Predicted and observed numbers of events before and after b-tagging and additional event selections. The num-
ber of background events after pretag selection is normalized to the number of data events. Signal acceptances and the
predicted number of events are given for two (mb̃1

,mχ̃0

1

) mass points with the acceptance for mLQ = 240 GeV identical to

(mb̃1
,mχ̃0

1

)=(240,0) GeV. The uncertainties on the total background and the signals include all statistical and systematic

uncertainties.

Process Pretag b-tag −0.1 < A < 0.2 Xjj > 0.75 Xjj > 0.9

∆φ( /ET , jets) > 0.6 p
jet1

T > 20 GeV p
jet1

T > 50 GeV
/ET > 40 GeV /ET > 150 GeV
HT > 60 GeV HT > 220 GeV

Diboson 2,060 38 35 31 0.3
W (→ lν) + light jets 49,250 130 119 105 0.5
Wcc̄, Wbb̄ 7,792 353 325 261 1.9
Z(→ ll) + light jets 17,663 11 9 8 0
Zcc̄, Zbb̄ 4,526 256 247 217 1.9
Top 2,019 348 301 190 2.2
MJ 30,243 444 205 157 0
Total background 113,553 1,579 ± 230 1,242 ± 188 971 ± 152 6.9 ± 1.7
# data events 113,553 1,463 1,131 901 7
Signal (acceptance, %)
(mb̃1

,mχ̃0

1

)=(240,0) GeV 145 ± 11 (38.7) 43.3 ± 6.4 (11.4) 42.0 ± 6.2 (11.1) - 10.5 ± 1.9 (2.8)

(mb̃1
,mχ̃0

1

)=(130,85) GeV 1,928 ± 158 (10.9) 544 ± 85 (3.1) 529 ± 77 (3.0) 481 ± 66 (2.7) -

the cross section. These selections are more restrictive for
LQ3 and b̃1 signals with larger mass. For regions with
small mb̃1

− mχ̃0

1

, the average /ET and jet energies are
lower, and relaxed requirements are found to be optimal.
The results of the selections, and the predicted numbers
of events from background processes are listed in Table I,
including two final signal selection examples. For a signal
with high /ET , the largest backgrounds are from W/Z +
bb̄ production and top quark processes. There is in addi-
tion a significant contribution from multijets for bottom
squark signal points with a small value of /ET .

Systematic uncertainties include those on the inte-
grated luminosity (6.1%), trigger efficiency (2%), and jet
energy calibration and reconstruction (3% for signal and
(2–7)% for background). Uncertainties associated with
b-tagging are (6–17)% for signal and (5–11)% for back-
ground. Uncertainties on theoretical cross sections for
SM processes include 10% on top quark production, and
6% on the total (W/Z)+jets cross section with an ad-
ditional 20% uncertainty on heavy flavor content. The
contribution from the MJ background is assigned a 25%
uncertainty which includes the impact of possible signal
events contained in the pretag sample.

We obtain limits on the pair production cross section
multiplied by the branching fraction squared (σ × B2)
using the CLs approach [22]. In this technique, an en-
semble of MC experiments using the expected numbers
of signal and background events is compared to the num-
ber of events observed in data to derive an exclusion
limit. Signal and background contributions are varied
within their uncertainties taking into account correla-
tions among their systematic uncertainties. The LQ3

and b̃1 (mχ̃0

1

= 0) observed and expected cross section
limits are given in Table II.

Figure 3(a) shows the 95% C.L. upper limits on the

TABLE II: Observed and expected 95% C.L. limits on the
cross section for different leptoquark or bottom squark (as-
suming mχ̃0

1

= 0) masses.

Mass (GeV) 220 240 250 260 280
Observed (pb) 0.077 0.063 0.056 0.052 0.054
Expected (pb) 0.067 0.056 0.049 0.046 0.040

cross section as a function of mLQ, together with the
theoretical cross section σth assuming B = 1. The un-
certainty on σth is obtained by varying the renormaliza-
tion and factorization scales by a factor of two from the
nominal choice µ = mLQ and incorporating the PDF
uncertainties [6]. Limits on mLQ are obtained from the
intersection of the observed cross section limit with the
central σth and yield a lower mass limit of 247 GeV for
B = 1 for the production of third-generation leptoquarks.
If the 95% C.L. experimental limit is compared with the
one standard deviation lower value of σth, we obtain a
mass limit of mLQ = 238 GeV. Also shown is the central
value of σth when the coupling to the bν and tτ channels
are identical, yielding B = 1 − 0.5 × Fsp where Fsp is
a phase space suppression factor for the τt channel [8].
The mass limit in this case is 234 GeV.

Figure 3(b) shows the excluded region in the plane of
the bottom squark versus neutralino mass obtained using
the central σth. For mχ̃0

1

= 0, the limit is mb̃1
> 247 GeV.

The exclusion region extends to mχ̃0

1

= 110 GeV for
160 < mb̃1

< 200 GeV.

In conclusion, in the 5.2 fb−1 data sample studied, the
observed number of events with the topology of two b-
jets plus missing transverse energy is consistent with that
expected from known SM processes. We set limits on
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FIG. 3: (color online). (a) The 95% C.L. expected (dashed line) and observed (points plus solid line) limits on σ × B2 as
a function of mLQ for the pair production of third-generation leptoquarks where B is the branching fraction to bν. The
theory band is shown in grey with an uncertainty range as discussed in the text. The long-dashed line indicates the expected
suppression of σ × B2 above the tτ threshold for equal bν and tτ couplings. (b) The 95% C.L. exclusion contour in the
(mb̃1

, mχ̃0

1

) plane. Also shown are results from previous searches at LEP [23] and the Tevatron [7, 24].

the cross section multiplied by square of the branching
fraction B to the bν final state as a function of lepto-
quark mass. These results are interpreted as mass limits
and give a limit of 247 GeV for B = 1 for the produc-
tion of charge-1/3 third-generation scalar leptoquarks.
We also exclude the production of bottom squarks for
a range of values in the (mb̃1

, mχ̃0

1

) mass plane such as
mb̃1

> 247 GeV for mχ̃0

1

= 0 and mχ̃0

1

> 110 GeV for
160 < mb̃1

< 200 GeV. These limits significantly extend
previous results.
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